Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 12(1): 113-117, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36608265

RESUMO

Physical aging of glassy polymers leads to a decrease in permeability over time when they are used in membranes. This hinders the industrial application of high free volume polymers, such as the archetypal polymer of intrinsic microporosity PIM-1, for membrane gas separation. In thin film composite (TFC) membranes, aging is much more rapid than in thicker self-standing membranes, as rearrangement within the thin active layer is relatively fast. Liquid alcohol treatment, which swells the membrane, is often used in the laboratory to rejuvenate aged self-standing membranes, but this is not easily applied on an industrial scale and is not suitable to refresh TFC membranes because of the risk of membrane delamination. In this work, it is demonstrated that a simple method of storage in an atmosphere of methanol vapor effectively retards physical aging of PIM-1 TFC membranes. The same method can also be utilized to refresh aged PIM-1 TFC membranes, and one-week methanol vapor storage is sufficient to recover most of the original CO2 permeance.

2.
Nat Commun ; 13(1): 1249, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273166

RESUMO

Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Dióxido de Carbono/química , Catálise , Estruturas Metalorgânicas/química , Água
3.
ACS Appl Mater Interfaces ; 13(48): 57294-57305, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812613

RESUMO

The high energy demand of CO2 absorption-desorption technologies has significantly inhibited their industrial utilization and implementation of the Paris Climate Accord. Catalytic solvent regeneration is of considerable interest due to its low operating temperature and high energy efficiency. Of the catalysts available, heterogeneous catalysts have exhibited relatively poor performances and are hindered by other challenges, which have slowed their large-scale deployment. Herein, we report a facile and eco-friendly approach for synthesizing water-dispersible Fe3O4 nanocatalysts coated with a wide range of amino acids (12 representative molecules) in aqueous media. The acidic properties of water-dispersible nanocatalysts can be easily tuned by introducing different functional groups during the hydrothermal synthesis procedure. We demonstrate that the prepared nanocatalysts can be used in energy-efficient CO2 capture plants with ease-of-use, at very low concentrations (0.1 wt %) and with extra-high efficiencies (up to ∼75% energy reductions). They can be applied in a range of solutions, including amino acids (i.e., short-chain, long-chain, and cyclic) and amines (i.e., primary, tertiary, and primary-tertiary mixture). Considering the superiority of the presented water-dispersible nanocatalysts, this technology is expected to provide a new pathway for the development of energy-efficient CO2 capture technologies.

4.
Data Brief ; 27: 104741, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763398

RESUMO

The data presented in this paper are related to the published research article "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent" [1]. The raw and analyzed data include the equilibrium and kinetics of CO2 absorption, the density and concentration of different CO2-containing species at upper and lower liquid phases, and particle size distribution of solid particles precipitated during CO2 absorption of aqueous and aqueous-based amino acid solvents. In addition, the SEM images of solid precipitates at the end of CO2 absorption are presented. The detailed values of this phase change amino acid solvent are crucial for large-scale implementation of CO2 capture systems with phase change behavior.

5.
Membranes (Basel) ; 9(3)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889848

RESUMO

Polymers of intrinsic microporosity (PIMs) are a promising membrane material for gas separation, because of their high free volume and micro-cavity size distribution. This is countered by PIMs-based membranes being highly susceptible to physical aging, which dramatically reduces their permselectivity over extended periods of time. Supercritical carbon dioxide is known to plasticize and partially solubilise polymers, altering the underlying membrane morphology, and hence impacting the gas separation properties. This investigation reports on the change in PIM-1 membranes after being exposed to supercritical CO2 for two- and eight-hour intervals, followed by two depressurization protocols, a rapid depressurization and a slow depressurization. The exposure times enables the impact contact time with supercritical CO2 has on the membrane morphology to be investigated, as well as the subsequent depressurization event. The density of the post supercritical CO2 exposed membranes, irrespective of exposure time and depressurization, were greater than the untreated membrane. This indicated that supercritical CO2 had solubilised the polymer chain, enabling PIM-1 to rearrange and contract the free volume micro-cavities present. As a consequence, the permeabilities of He, CH4, O2 and CO2 were all reduced for the supercritical CO2-treated membranes compared to the original membrane, while N2 permeability remained unchanged. Importantly, the physical aging properties of the supercritical CO2-treated membranes altered, with only minor reductions in N2, CH4 and O2 permeabilities observed over extended periods of time. In contrast, He and CO2 permeabilities experienced similar physical aging in the supercritical treated membranes to that of the original membrane. This was interpreted as the supercritical CO2 treatment enabling micro-cavity contraction to favour the smaller CO2 molecule, due to size exclusion of the larger N2, CH4 and O2 molecules. Therefore, physical aging of the treated membranes only had minor impact on N2, CH4 and O2 permeability; while the smaller He and CO2 gases experience greater permeability loss. This result implies that supercritical CO2 exposure has potential to limit physical aging performance loss in PIM-1 based membranes for O2/N2 separation.

6.
Membranes (Basel) ; 7(1)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218644

RESUMO

Membrane gas separation has potential for the recovery and purification of helium, because the majority of membranes have selectivity for helium. This review reports on the current state of the research and patent literature for membranes undertaking helium separation. This includes direct recovery from natural gas, as an ancillary stage in natural gas processing, as well as niche applications where helium recycling has potential. A review of the available polymeric and inorganic membranes for helium separation is provided. Commercial gas separation membranes in comparable gas industries are discussed in terms of their potential in helium separation. Also presented are the various membrane process designs patented for the recovery and purification of helium from various sources, as these demonstrate that it is viable to separate helium through currently available polymeric membranes. This review places a particular focus on those processes where membranes are combined in series with another separation technology, commonly pressure swing adsorption. These combined processes have the most potential for membranes to produce a high purity helium product. The review demonstrates that membrane gas separation is technically feasible for helium recovery and purification, though membranes are currently only applied in niche applications focused on reusing helium rather than separation from natural sources.

7.
Membranes (Basel) ; 6(1)2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26703745

RESUMO

Membrane technology can be used for both post combustion carbon dioxide capture and acidic gas sweetening and dehydration of natural gas. These processes are especially suited for polymeric membranes with polyether functionality, because of the high affinity of this species for both H2O and CO2. Here, both crosslinked polyethylene glycol diacrylate and a polyether-polyamide block copolymer (PEBAX 2533(©)) are studied for their ability to separate CO2 from CH4 and N2 under single and mixed gas conditions, for both dry and wet feeds, as well as when 500 ppm H2S is present. The solubility of gases within these polymers is shown to be better correlated with the Lennard Jones well depth than with critical temperature. Under dry mixed gas conditions, CO2 permeability is reduced compared to the single gas measurement because of competitive sorption from CH4 or N2. However, selectivity for CO2 is retained in both polymers. The presence of water in the feed is observed to swell the PEG membrane resulting in a significant increase in CO2 permeability relative to the dry gas scenario. Importantly, the selectivity is again retained under wet feed gas conditions. The presence of H2S is observed to only slightly reduce CO2 permeability through both membranes.

8.
J Phys Chem B ; 115(19): 6329-39, 2011 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-21500794

RESUMO

Time-resolved evanescent wave-induced fluorescence studies have been carried out on a series of fluorescently labeled oligonucleotide sequences adsorbed to a silica surface from solution. The fluorescence decay profiles of a fluorescent energy donor group undergoing resonance energy transfer to a nonemissive energy-acceptor molecule have been analyzed in terms of a distribution of donor-acceptor distances to reveal the conformational changes that occur in these oligonucleotides upon adsorption. Evanescent wave-induced time-resolved Förster resonance energy-transfer (EW-TRFRET) measurements indicate that at a high electrolyte concentration, there is localized separation of the oligonucleotide strands, and the helical structure adopts an "unraveled" conformation as a result of adsorption. This is attributed to the flexibility within the oligonucleotide at high electrolyte concentration allowing multiple segments of the oligonucleotide to have direct surface interaction. In contrast, the EW-TRFRET measurements at a lower electrolyte concentration reveal that the oligonucleotide retains its helical conformation in a localized extended state. This behavior implies that the rigidity of the oligonucleotide at this electrolyte concentration restricts direct interaction with the silica to a few segments, which correspondingly introduces kinks in the double helix conformation and results in significant oligonucleotide segmental extension into solution.


Assuntos
Oligonucleotídeos/química , Dióxido de Silício/química , Adsorção , Eletrólitos/química , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico
9.
Eur Biophys J ; 33(2): 130-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14586518

RESUMO

We have shown that the molecular conformation of a protein at an interface can be probed spatially using time-resolved evanescent wave-induced fluorescence spectroscopic (TREWIFS) techniques. Specifically, by varying the penetration depth of the evanescent field, variable-angle TREWIFS, coupled with variable-angle evanescent wave-induced time-resolved fluorescence anisotropy measurements, allow us to monitor how fluorescence intensity and fluorescence depolarization vary normal to an interface as a function of time after excitation. We have applied this technique to the study of bovine serum albumin (BSA) complexed noncovalently with the fluorophore 1-anilinonaphthalene-8-sulfonic acid. The fluorescence decay varies as a function of the penetration depth of the evanescent wave in a manner that indicates a gradient of hydrophobicity through the adsorbed protein, normal to the interface. Restriction of the fluorescent probe's motion also occurs as a function of distance normal to the interface. The results are consistent with a model of partial protein denaturation: at the surface, an adsorbed BSA molecule unfolds, thus optimizing protein-silica interactions and the number of points of attachment to the surface. Further away, normal to the surface, the protein molecule maintains its coiled structure.


Assuntos
Algoritmos , Polarização de Fluorescência/métodos , Soroalbumina Bovina/química , Espectrometria de Fluorescência/métodos , Água/química , Adsorção , Desenho de Equipamento , Polarização de Fluorescência/instrumentação , Conformação Proteica , Soroalbumina Bovina/análise , Dióxido de Silício/química , Espectrometria de Fluorescência/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...